\(\int \frac {x^5 (a+b \csc ^{-1}(c x))}{(d+e x^2)^{5/2}} \, dx\) [156]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [F]
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 243 \[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\frac {b c d x \sqrt {-1+c^2 x^2}}{3 e^2 \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {d+e x^2}}-\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}-\frac {8 b c \sqrt {d} x \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{3 e^3 \sqrt {c^2 x^2}}+\frac {b x \text {arctanh}\left (\frac {\sqrt {e} \sqrt {-1+c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{e^{5/2} \sqrt {c^2 x^2}} \]

[Out]

-1/3*d^2*(a+b*arccsc(c*x))/e^3/(e*x^2+d)^(3/2)+b*x*arctanh(e^(1/2)*(c^2*x^2-1)^(1/2)/c/(e*x^2+d)^(1/2))/e^(5/2
)/(c^2*x^2)^(1/2)-8/3*b*c*x*arctan((e*x^2+d)^(1/2)/d^(1/2)/(c^2*x^2-1)^(1/2))*d^(1/2)/e^3/(c^2*x^2)^(1/2)+2*d*
(a+b*arccsc(c*x))/e^3/(e*x^2+d)^(1/2)+1/3*b*c*d*x*(c^2*x^2-1)^(1/2)/e^2/(c^2*d+e)/(c^2*x^2)^(1/2)/(e*x^2+d)^(1
/2)+(a+b*arccsc(c*x))*(e*x^2+d)^(1/2)/e^3

Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {272, 45, 5347, 12, 1628, 163, 65, 223, 212, 95, 210} \[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=-\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}-\frac {8 b c \sqrt {d} x \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {c^2 x^2-1}}\right )}{3 e^3 \sqrt {c^2 x^2}}+\frac {b x \text {arctanh}\left (\frac {\sqrt {e} \sqrt {c^2 x^2-1}}{c \sqrt {d+e x^2}}\right )}{e^{5/2} \sqrt {c^2 x^2}}+\frac {b c d x \sqrt {c^2 x^2-1}}{3 e^2 \sqrt {c^2 x^2} \left (c^2 d+e\right ) \sqrt {d+e x^2}} \]

[In]

Int[(x^5*(a + b*ArcCsc[c*x]))/(d + e*x^2)^(5/2),x]

[Out]

(b*c*d*x*Sqrt[-1 + c^2*x^2])/(3*e^2*(c^2*d + e)*Sqrt[c^2*x^2]*Sqrt[d + e*x^2]) - (d^2*(a + b*ArcCsc[c*x]))/(3*
e^3*(d + e*x^2)^(3/2)) + (2*d*(a + b*ArcCsc[c*x]))/(e^3*Sqrt[d + e*x^2]) + (Sqrt[d + e*x^2]*(a + b*ArcCsc[c*x]
))/e^3 - (8*b*c*Sqrt[d]*x*ArcTan[Sqrt[d + e*x^2]/(Sqrt[d]*Sqrt[-1 + c^2*x^2])])/(3*e^3*Sqrt[c^2*x^2]) + (b*x*A
rcTanh[(Sqrt[e]*Sqrt[-1 + c^2*x^2])/(c*Sqrt[d + e*x^2])])/(e^(5/2)*Sqrt[c^2*x^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 163

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1628

Int[(Px_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> With[{
Qx = PolynomialQuotient[Px, a + b*x, x], R = PolynomialRemainder[Px, a + b*x, x]}, Simp[b*R*(a + b*x)^(m + 1)*
(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e
 - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*ExpandToSum[(m + 1)*(b*c - a*d)*(b*e - a*f)*Qx + a*d*f
*R*(m + 1) - b*R*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*R*(m + n + p + 3)*x, x], x], x]] /; FreeQ[{a, b,
c, d, e, f, n, p}, x] && PolyQ[Px, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]

Rule 5347

Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u =
 IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcCsc[c*x], u, x] + Dist[b*c*(x/Sqrt[c^2*x^2]), Int[SimplifyI
ntegrand[u/(x*Sqrt[c^2*x^2 - 1]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && ((IGtQ[p, 0] &&  !(ILtQ
[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0])) || (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[p, 0] && GtQ[m + 2*p + 3, 0])) || (I
LtQ[(m + 2*p + 1)/2, 0] &&  !ILtQ[(m - 1)/2, 0]))

Rubi steps \begin{align*} \text {integral}& = -\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}+\frac {(b c x) \int \frac {8 d^2+12 d e x^2+3 e^2 x^4}{3 e^3 x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{3/2}} \, dx}{\sqrt {c^2 x^2}} \\ & = -\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}+\frac {(b c x) \int \frac {8 d^2+12 d e x^2+3 e^2 x^4}{x \sqrt {-1+c^2 x^2} \left (d+e x^2\right )^{3/2}} \, dx}{3 e^3 \sqrt {c^2 x^2}} \\ & = -\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}+\frac {(b c x) \text {Subst}\left (\int \frac {8 d^2+12 d e x+3 e^2 x^2}{x \sqrt {-1+c^2 x} (d+e x)^{3/2}} \, dx,x,x^2\right )}{6 e^3 \sqrt {c^2 x^2}} \\ & = \frac {b c d x \sqrt {-1+c^2 x^2}}{3 e^2 \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {d+e x^2}}-\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}-\frac {(b c x) \text {Subst}\left (\int \frac {-4 d^2 \left (c^2 d+e\right )-\frac {3}{2} d e \left (c^2 d+e\right ) x}{x \sqrt {-1+c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{3 d e^3 \left (c^2 d+e\right ) \sqrt {c^2 x^2}} \\ & = \frac {b c d x \sqrt {-1+c^2 x^2}}{3 e^2 \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {d+e x^2}}-\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}+\frac {(4 b c d x) \text {Subst}\left (\int \frac {1}{x \sqrt {-1+c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{3 e^3 \sqrt {c^2 x^2}}+\frac {(b c x) \text {Subst}\left (\int \frac {1}{\sqrt {-1+c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{2 e^2 \sqrt {c^2 x^2}} \\ & = \frac {b c d x \sqrt {-1+c^2 x^2}}{3 e^2 \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {d+e x^2}}-\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}+\frac {(8 b c d x) \text {Subst}\left (\int \frac {1}{-d-x^2} \, dx,x,\frac {\sqrt {d+e x^2}}{\sqrt {-1+c^2 x^2}}\right )}{3 e^3 \sqrt {c^2 x^2}}+\frac {(b x) \text {Subst}\left (\int \frac {1}{\sqrt {d+\frac {e}{c^2}+\frac {e x^2}{c^2}}} \, dx,x,\sqrt {-1+c^2 x^2}\right )}{c e^2 \sqrt {c^2 x^2}} \\ & = \frac {b c d x \sqrt {-1+c^2 x^2}}{3 e^2 \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {d+e x^2}}-\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}-\frac {8 b c \sqrt {d} x \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{3 e^3 \sqrt {c^2 x^2}}+\frac {(b x) \text {Subst}\left (\int \frac {1}{1-\frac {e x^2}{c^2}} \, dx,x,\frac {\sqrt {-1+c^2 x^2}}{\sqrt {d+e x^2}}\right )}{c e^2 \sqrt {c^2 x^2}} \\ & = \frac {b c d x \sqrt {-1+c^2 x^2}}{3 e^2 \left (c^2 d+e\right ) \sqrt {c^2 x^2} \sqrt {d+e x^2}}-\frac {d^2 \left (a+b \csc ^{-1}(c x)\right )}{3 e^3 \left (d+e x^2\right )^{3/2}}+\frac {2 d \left (a+b \csc ^{-1}(c x)\right )}{e^3 \sqrt {d+e x^2}}+\frac {\sqrt {d+e x^2} \left (a+b \csc ^{-1}(c x)\right )}{e^3}-\frac {8 b c \sqrt {d} x \arctan \left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1+c^2 x^2}}\right )}{3 e^3 \sqrt {c^2 x^2}}+\frac {b x \text {arctanh}\left (\frac {\sqrt {e} \sqrt {-1+c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{e^{5/2} \sqrt {c^2 x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 1.47 (sec) , antiderivative size = 240, normalized size of antiderivative = 0.99 \[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\frac {\frac {2 b c d e \sqrt {1-\frac {1}{c^2 x^2}} x \left (d+e x^2\right )}{c^2 d+e}+2 a \left (8 d^2+12 d e x^2+3 e^2 x^4\right )+\frac {b c \left (d+e x^2\right ) \left (-\frac {8 d \sqrt {1+\frac {d}{e x^2}} \operatorname {AppellF1}\left (1,\frac {1}{2},\frac {1}{2},2,\frac {1}{c^2 x^2},-\frac {d}{e x^2}\right )}{c^2}-\frac {3 e \sqrt {1-\frac {1}{c^2 x^2}} x^4 \sqrt {1+\frac {e x^2}{d}} \operatorname {AppellF1}\left (1,\frac {1}{2},\frac {1}{2},2,c^2 x^2,-\frac {e x^2}{d}\right )}{\sqrt {1-c^2 x^2}}\right )}{x}+2 b \left (8 d^2+12 d e x^2+3 e^2 x^4\right ) \csc ^{-1}(c x)}{6 e^3 \left (d+e x^2\right )^{3/2}} \]

[In]

Integrate[(x^5*(a + b*ArcCsc[c*x]))/(d + e*x^2)^(5/2),x]

[Out]

((2*b*c*d*e*Sqrt[1 - 1/(c^2*x^2)]*x*(d + e*x^2))/(c^2*d + e) + 2*a*(8*d^2 + 12*d*e*x^2 + 3*e^2*x^4) + (b*c*(d
+ e*x^2)*((-8*d*Sqrt[1 + d/(e*x^2)]*AppellF1[1, 1/2, 1/2, 2, 1/(c^2*x^2), -(d/(e*x^2))])/c^2 - (3*e*Sqrt[1 - 1
/(c^2*x^2)]*x^4*Sqrt[1 + (e*x^2)/d]*AppellF1[1, 1/2, 1/2, 2, c^2*x^2, -((e*x^2)/d)])/Sqrt[1 - c^2*x^2]))/x + 2
*b*(8*d^2 + 12*d*e*x^2 + 3*e^2*x^4)*ArcCsc[c*x])/(6*e^3*(d + e*x^2)^(3/2))

Maple [F]

\[\int \frac {x^{5} \left (a +b \,\operatorname {arccsc}\left (c x \right )\right )}{\left (e \,x^{2}+d \right )^{\frac {5}{2}}}d x\]

[In]

int(x^5*(a+b*arccsc(c*x))/(e*x^2+d)^(5/2),x)

[Out]

int(x^5*(a+b*arccsc(c*x))/(e*x^2+d)^(5/2),x)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 514 vs. \(2 (205) = 410\).

Time = 0.50 (sec) , antiderivative size = 2119, normalized size of antiderivative = 8.72 \[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\text {Too large to display} \]

[In]

integrate(x^5*(a+b*arccsc(c*x))/(e*x^2+d)^(5/2),x, algorithm="fricas")

[Out]

[1/12*(3*(b*c^2*d^3 + (b*c^2*d*e^2 + b*e^3)*x^4 + b*d^2*e + 2*(b*c^2*d^2*e + b*d*e^2)*x^2)*sqrt(e)*log(8*c^4*e
^2*x^4 + c^4*d^2 - 6*c^2*d*e + 8*(c^4*d*e - c^2*e^2)*x^2 + 4*(2*c^3*e*x^2 + c^3*d - c*e)*sqrt(c^2*x^2 - 1)*sqr
t(e*x^2 + d)*sqrt(e) + e^2) + 8*(b*c^3*d^3 + b*c*d^2*e + (b*c^3*d*e^2 + b*c*e^3)*x^4 + 2*(b*c^3*d^2*e + b*c*d*
e^2)*x^2)*sqrt(-d)*log(((c^4*d^2 - 6*c^2*d*e + e^2)*x^4 - 8*(c^2*d^2 - d*e)*x^2 + 4*sqrt(c^2*x^2 - 1)*((c^2*d
- e)*x^2 - 2*d)*sqrt(e*x^2 + d)*sqrt(-d) + 8*d^2)/x^4) + 4*(8*a*c^3*d^3 + 8*a*c*d^2*e + 3*(a*c^3*d*e^2 + a*c*e
^3)*x^4 + 12*(a*c^3*d^2*e + a*c*d*e^2)*x^2 + (8*b*c^3*d^3 + 8*b*c*d^2*e + 3*(b*c^3*d*e^2 + b*c*e^3)*x^4 + 12*(
b*c^3*d^2*e + b*c*d*e^2)*x^2)*arccsc(c*x) + (b*c*d*e^2*x^2 + b*c*d^2*e)*sqrt(c^2*x^2 - 1))*sqrt(e*x^2 + d))/(c
^3*d^3*e^3 + c*d^2*e^4 + (c^3*d*e^5 + c*e^6)*x^4 + 2*(c^3*d^2*e^4 + c*d*e^5)*x^2), -1/12*(16*(b*c^3*d^3 + b*c*
d^2*e + (b*c^3*d*e^2 + b*c*e^3)*x^4 + 2*(b*c^3*d^2*e + b*c*d*e^2)*x^2)*sqrt(d)*arctan(-1/2*sqrt(c^2*x^2 - 1)*(
(c^2*d - e)*x^2 - 2*d)*sqrt(e*x^2 + d)*sqrt(d)/(c^2*d*e*x^4 + (c^2*d^2 - d*e)*x^2 - d^2)) - 3*(b*c^2*d^3 + (b*
c^2*d*e^2 + b*e^3)*x^4 + b*d^2*e + 2*(b*c^2*d^2*e + b*d*e^2)*x^2)*sqrt(e)*log(8*c^4*e^2*x^4 + c^4*d^2 - 6*c^2*
d*e + 8*(c^4*d*e - c^2*e^2)*x^2 + 4*(2*c^3*e*x^2 + c^3*d - c*e)*sqrt(c^2*x^2 - 1)*sqrt(e*x^2 + d)*sqrt(e) + e^
2) - 4*(8*a*c^3*d^3 + 8*a*c*d^2*e + 3*(a*c^3*d*e^2 + a*c*e^3)*x^4 + 12*(a*c^3*d^2*e + a*c*d*e^2)*x^2 + (8*b*c^
3*d^3 + 8*b*c*d^2*e + 3*(b*c^3*d*e^2 + b*c*e^3)*x^4 + 12*(b*c^3*d^2*e + b*c*d*e^2)*x^2)*arccsc(c*x) + (b*c*d*e
^2*x^2 + b*c*d^2*e)*sqrt(c^2*x^2 - 1))*sqrt(e*x^2 + d))/(c^3*d^3*e^3 + c*d^2*e^4 + (c^3*d*e^5 + c*e^6)*x^4 + 2
*(c^3*d^2*e^4 + c*d*e^5)*x^2), -1/6*(3*(b*c^2*d^3 + (b*c^2*d*e^2 + b*e^3)*x^4 + b*d^2*e + 2*(b*c^2*d^2*e + b*d
*e^2)*x^2)*sqrt(-e)*arctan(1/2*(2*c^2*e*x^2 + c^2*d - e)*sqrt(c^2*x^2 - 1)*sqrt(e*x^2 + d)*sqrt(-e)/(c^3*e^2*x
^4 - c*d*e + (c^3*d*e - c*e^2)*x^2)) - 4*(b*c^3*d^3 + b*c*d^2*e + (b*c^3*d*e^2 + b*c*e^3)*x^4 + 2*(b*c^3*d^2*e
 + b*c*d*e^2)*x^2)*sqrt(-d)*log(((c^4*d^2 - 6*c^2*d*e + e^2)*x^4 - 8*(c^2*d^2 - d*e)*x^2 + 4*sqrt(c^2*x^2 - 1)
*((c^2*d - e)*x^2 - 2*d)*sqrt(e*x^2 + d)*sqrt(-d) + 8*d^2)/x^4) - 2*(8*a*c^3*d^3 + 8*a*c*d^2*e + 3*(a*c^3*d*e^
2 + a*c*e^3)*x^4 + 12*(a*c^3*d^2*e + a*c*d*e^2)*x^2 + (8*b*c^3*d^3 + 8*b*c*d^2*e + 3*(b*c^3*d*e^2 + b*c*e^3)*x
^4 + 12*(b*c^3*d^2*e + b*c*d*e^2)*x^2)*arccsc(c*x) + (b*c*d*e^2*x^2 + b*c*d^2*e)*sqrt(c^2*x^2 - 1))*sqrt(e*x^2
 + d))/(c^3*d^3*e^3 + c*d^2*e^4 + (c^3*d*e^5 + c*e^6)*x^4 + 2*(c^3*d^2*e^4 + c*d*e^5)*x^2), -1/6*(8*(b*c^3*d^3
 + b*c*d^2*e + (b*c^3*d*e^2 + b*c*e^3)*x^4 + 2*(b*c^3*d^2*e + b*c*d*e^2)*x^2)*sqrt(d)*arctan(-1/2*sqrt(c^2*x^2
 - 1)*((c^2*d - e)*x^2 - 2*d)*sqrt(e*x^2 + d)*sqrt(d)/(c^2*d*e*x^4 + (c^2*d^2 - d*e)*x^2 - d^2)) + 3*(b*c^2*d^
3 + (b*c^2*d*e^2 + b*e^3)*x^4 + b*d^2*e + 2*(b*c^2*d^2*e + b*d*e^2)*x^2)*sqrt(-e)*arctan(1/2*(2*c^2*e*x^2 + c^
2*d - e)*sqrt(c^2*x^2 - 1)*sqrt(e*x^2 + d)*sqrt(-e)/(c^3*e^2*x^4 - c*d*e + (c^3*d*e - c*e^2)*x^2)) - 2*(8*a*c^
3*d^3 + 8*a*c*d^2*e + 3*(a*c^3*d*e^2 + a*c*e^3)*x^4 + 12*(a*c^3*d^2*e + a*c*d*e^2)*x^2 + (8*b*c^3*d^3 + 8*b*c*
d^2*e + 3*(b*c^3*d*e^2 + b*c*e^3)*x^4 + 12*(b*c^3*d^2*e + b*c*d*e^2)*x^2)*arccsc(c*x) + (b*c*d*e^2*x^2 + b*c*d
^2*e)*sqrt(c^2*x^2 - 1))*sqrt(e*x^2 + d))/(c^3*d^3*e^3 + c*d^2*e^4 + (c^3*d*e^5 + c*e^6)*x^4 + 2*(c^3*d^2*e^4
+ c*d*e^5)*x^2)]

Sympy [F]

\[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\int \frac {x^{5} \left (a + b \operatorname {acsc}{\left (c x \right )}\right )}{\left (d + e x^{2}\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(x**5*(a+b*acsc(c*x))/(e*x**2+d)**(5/2),x)

[Out]

Integral(x**5*(a + b*acsc(c*x))/(d + e*x**2)**(5/2), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(x^5*(a+b*arccsc(c*x))/(e*x^2+d)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F]

\[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\int { \frac {{\left (b \operatorname {arccsc}\left (c x\right ) + a\right )} x^{5}}{{\left (e x^{2} + d\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(x^5*(a+b*arccsc(c*x))/(e*x^2+d)^(5/2),x, algorithm="giac")

[Out]

integrate((b*arccsc(c*x) + a)*x^5/(e*x^2 + d)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^5 \left (a+b \csc ^{-1}(c x)\right )}{\left (d+e x^2\right )^{5/2}} \, dx=\int \frac {x^5\,\left (a+b\,\mathrm {asin}\left (\frac {1}{c\,x}\right )\right )}{{\left (e\,x^2+d\right )}^{5/2}} \,d x \]

[In]

int((x^5*(a + b*asin(1/(c*x))))/(d + e*x^2)^(5/2),x)

[Out]

int((x^5*(a + b*asin(1/(c*x))))/(d + e*x^2)^(5/2), x)